Skip to content

Basic functionality

The functions regress() and classify() provide basic modeling wrappers for tidy data.

regress
Linear regression on tidy data
classify
Classification on tidy data

Generic methods

The ‘tidyfit.models’ frame produced by ‘regress()’ or ‘classify()’ can be used to obtain coefficients or predictions.

coef(<tidyfit.models>)
Extract coefficients from a tidyfit.models frame
explain(<tidyfit.models>)
An interface for variable importance measures for a fitted tidyfit.models frames
explain()
An interface for variable importance measures for a fitted tidyfit.models frames
predict(<tidyfit.models>)
Predict using a tidyfit.models frame
fitted(<tidyfit.models>)
Obtain fitted values from models in a tidyfit.models frame
residuals(<tidyfit.models>)
Obtain residuals from models in a tidyfit.models frame

Modeling engine

The model wrapper m() standardizes a large number of linear regression and classification algorithms.

m()
Generic model wrapper for tidyfit

Implemented algorithms

.fit(<adalasso>)
Adaptive Lasso regression or classification for tidyfit
.fit(<anova>)
ANOVA for tidyfit
.fit(<bayes>)
Bayesian generalized linear regression for tidyfit
.fit(<blasso>)
Bayesian Lasso regression for tidyfit
.fit(<bma>)
Bayesian model averaging for tidyfit
.fit(<boost>)
Gradient boosting regression for tidyfit
.fit(<bridge>)
Bayesian ridge regression for tidyfit
.fit(<chisq>)
Pearson's Chi-squared test for tidyfit
.fit(<cor>)
Pearson's correlation for tidyfit
.fit(<enet>)
ElasticNet regression or classification for tidyfit
.fit(<genetic>)
Genetic algorithm with linear regression fitness evaluator for tidyfit
.fit(<gets>)
General-to-specific regression for tidyfit
.fit(<glm>)
Generalized linear regression for tidyfit
.fit(<glmm>)
Generalized linear mixed-effects model for tidyfit
.fit(<group_lasso>)
Grouped Lasso regression and classification for tidyfit
.fit(<hfr>)
Hierarchical feature regression for tidyfit
.fit(<lasso>)
Lasso regression and classification for tidyfit
.fit(<lm>)
Linear regression for tidyfit
.fit(<mrmr>)
Minimum redundancy, maximum relevance feature selection for tidyfit
.fit(<mslm>)
Markov-Switching Regression for tidyfit
.fit(<nnet>)
Neural Network regression for tidyfit
.fit(<pcr>)
Principal Components Regression for tidyfit
.fit(<plsr>)
Partial Least Squares Regression for tidyfit
.fit(<quantile>)
Quantile regression for tidyfit
.fit(<quantile_rf>)
Quantile regression forest for tidyfit
.fit(<relief>)
ReliefF and RReliefF feature selection algorithm for tidyfit
.fit(<rf>)
Random Forest regression or classification for tidyfit
.fit(<ridge>)
Ridge regression and classification for tidyfit
.fit(<robust>)
Robust regression for tidyfit
.fit(<spikeslab>)
Bayesian Spike and Slab regression or classification for tidyfit
.fit(<subset>)
Best subset regression and classification for tidyfit
.fit(<svm>)
Support vector regression or classification for tidyfit
.fit(<tvp>)
Bayesian Time-Varying Regression for tidyfit

Data

tidyfit comes with a built-in financial factor returns dataset.

Factor_Industry_Returns
Industry-Factor Returns Data Set