Package index
Basic functionality
The functions regress()
and classify()
provide basic modeling wrappers for tidy data.
Generic methods
The ‘tidyfit.models’ frame produced by ‘regress()’ or ‘classify()’ can be used to obtain coefficients or predictions.
-
coef(<tidyfit.models>)
- Extract coefficients from a
tidyfit.models
frame
-
explain(<tidyfit.models>)
- An interface for variable importance measures for a fitted tidyfit.models frames
-
explain()
- An interface for variable importance measures for a fitted tidyfit.models frames
-
predict(<tidyfit.models>)
- Predict using a
tidyfit.models
frame
-
fitted(<tidyfit.models>)
- Obtain fitted values from models in a
tidyfit.models
frame
-
residuals(<tidyfit.models>)
- Obtain residuals from models in a
tidyfit.models
frame
Modeling engine
The model wrapper m()
standardizes a large number of linear regression and classification algorithms.
-
m()
- Generic model wrapper for
tidyfit
-
.fit(<adalasso>)
- Adaptive Lasso regression or classification for
tidyfit
-
.fit(<anova>)
- ANOVA for
tidyfit
-
.fit(<bayes>)
- Bayesian generalized linear regression for
tidyfit
-
.fit(<blasso>)
- Bayesian Lasso regression for
tidyfit
-
.fit(<bma>)
- Bayesian model averaging for
tidyfit
-
.fit(<boost>)
- Gradient boosting regression for
tidyfit
-
.fit(<bridge>)
- Bayesian ridge regression for
tidyfit
-
.fit(<chisq>)
- Pearson's Chi-squared test for
tidyfit
-
.fit(<cor>)
- Pearson's correlation for
tidyfit
-
.fit(<enet>)
- ElasticNet regression or classification for
tidyfit
-
.fit(<genetic>)
- Genetic algorithm with linear regression fitness evaluator for
tidyfit
-
.fit(<gets>)
- General-to-specific regression for
tidyfit
-
.fit(<glm>)
- Generalized linear regression for
tidyfit
-
.fit(<glmm>)
- Generalized linear mixed-effects model for
tidyfit
-
.fit(<group_lasso>)
- Grouped Lasso regression and classification for
tidyfit
-
.fit(<hfr>)
- Hierarchical feature regression for
tidyfit
-
.fit(<lasso>)
- Lasso regression and classification for
tidyfit
-
.fit(<lm>)
- Linear regression for
tidyfit
-
.fit(<mrmr>)
- Minimum redundancy, maximum relevance feature selection for
tidyfit
-
.fit(<mslm>)
- Markov-Switching Regression for
tidyfit
-
.fit(<nnet>)
- Neural Network regression for
tidyfit
-
.fit(<pcr>)
- Principal Components Regression for
tidyfit
-
.fit(<plsr>)
- Partial Least Squares Regression for
tidyfit
-
.fit(<quantile>)
- Quantile regression for
tidyfit
-
.fit(<quantile_rf>)
- Quantile regression forest for
tidyfit
-
.fit(<relief>)
- ReliefF and RReliefF feature selection algorithm for
tidyfit
-
.fit(<rf>)
- Random Forest regression or classification for
tidyfit
-
.fit(<ridge>)
- Ridge regression and classification for
tidyfit
-
.fit(<robust>)
- Robust regression for
tidyfit
-
.fit(<spikeslab>)
- Bayesian Spike and Slab regression or classification for
tidyfit
-
.fit(<subset>)
- Best subset regression and classification for
tidyfit
-
.fit(<svm>)
- Support vector regression or classification for
tidyfit
-
.fit(<tvp>)
- Bayesian Time-Varying Regression for
tidyfit
-
Factor_Industry_Returns
- Industry-Factor Returns Data Set