Fits a linear regression or classification with L1 penalty on a 'tidyFit' R6
class. The function can be used with regress
and classify
.
Details
Hyperparameters:
lambda
(L1 penalty)
Important method arguments (passed to m
)
The Lasso regression is estimated using glmnet::glmnet
with alpha = 1
. See ?glmnet
for more details. For classification pass family = "binomial"
to ...
in m
or use classify
.
Implementation
If the response variable contains more than 2 classes, a multinomial response is used automatically.
Features are standardized by default with coefficients transformed to the original scale.
If no hyperparameter grid is passed (is.null(control$lambda)
), dials::grid_regular()
is used to determine a sensible default grid. The grid size is 100. Note that the grid selection tools provided by glmnet::glmnet
cannot be used (e.g. dfmax
). This is to guarantee identical grids across groups in the tibble.
References
Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22. URL https://www.jstatsoft.org/v33/i01/.
See also
.fit.enet
, .fit.ridge
, .fit.adalasso
and m
methods
Examples
# Load data
data <- tidyfit::Factor_Industry_Returns
# Stand-alone function
fit <- m("lasso", Return ~ ., data, lambda = 0.5)
fit
#> # A tibble: 1 × 5
#> estimator_fct `size (MB)` grid_id model_object settings
#> <chr> <dbl> <chr> <list> <list>
#> 1 glmnet::glmnet 3.05 #001|001 <tidyFit> <tibble [1 × 3]>
# Within 'regress' function
fit <- regress(data, Return ~ ., m("lasso", lambda = c(0.1, 0.5)),
.mask = c("Date", "Industry"))
coef(fit)
#> # A tibble: 8 × 5
#> # Groups: model [1]
#> model term estimate grid_id model_info
#> <chr> <chr> <dbl> <chr> <list>
#> 1 lasso (Intercept) 0.522 #001|001 <tibble [1 × 2]>
#> 2 lasso Mkt-RF 0.819 #001|001 <tibble [1 × 2]>
#> 3 lasso (Intercept) 0.191 #001|002 <tibble [1 × 2]>
#> 4 lasso Mkt-RF 0.934 #001|002 <tibble [1 × 2]>
#> 5 lasso HML 0.0596 #001|002 <tibble [1 × 2]>
#> 6 lasso RMW 0.0910 #001|002 <tibble [1 × 2]>
#> 7 lasso CMA 0.0316 #001|002 <tibble [1 × 2]>
#> 8 lasso RF 0.592 #001|002 <tibble [1 × 2]>