Fits a single-hidden-layer neural network regression on a 'tidyFit' R6
class.
The function can be used with regress
and classify
.
Details
Hyperparameters:
size
(number of units in the hidden layer)decay
(parameter for weight decay)maxit
(maximum number of iterations)
Important method arguments (passed to m
)
The function provides a wrapper for nnet::nnet.formula
. See ?nnet
for more details.
Implementation
For regress
, linear output units (linout=True
) are used, while classify
implements
the default logic of nnet
(entropy=TRUE
for 2 target classes and softmax=TRUE
for more classes).
Examples
# Load data
data <- tidyfit::Factor_Industry_Returns
# Stand-alone function
fit <- m("nnet", Return ~ ., data)
fit
#> # A tibble: 1 × 5
#> estimator_fct `size (MB)` grid_id model_object settings
#> <chr> <dbl> <chr> <list> <list>
#> 1 nnet::nnet 1.84 #0010000 <tidyFit> <tibble [1 × 3]>
# Within 'regress' function
fit <- regress(data, Return ~ ., m("nnet", decay=0.5, size = 8),
.mask = c("Date", "Industry"))
# Within 'classify' function
fit <- classify(iris, Species ~ ., m("nnet", decay=0.5, size = 8))