Fits a Bayesian ridge regression on a 'tidyFit' R6
class. The function can be used with regress
.
Details
Hyperparameters:
None. Cross validation not applicable.
Important method arguments (passed to m
)
The function provides a wrapper for monomvn::bridge
. See ?bridge
for more details.
Implementation
Features are standardized by default with coefficients transformed to the original scale.
References
Gramacy RB, (qpgen2/quadprog) wFcfCMaubBAT (2023). monomvn: Estimation for MVN and Student-t Data with Monotone Missingness. R package version 1.9-17, https://CRAN.R-project.org/package=monomvn.
See also
.fit.ridge
, .fit.blasso
and m
methods
Examples
# Load data
data <- tidyfit::Factor_Industry_Returns
# Stand-alone function
fit <- m("bridge", Return ~ ., data, T = 100)
fit
#> # A tibble: 1 × 5
#> estimator_fct `size (MB)` grid_id model_object settings
#> <chr> <dbl> <chr> <list> <list>
#> 1 monomvn::bridge 1.44 #0010000 <tidyFit> <tibble [1 × 1]>
# Within 'regress' function
fit <- regress(data, Return ~ ., m("bridge", T = 100),
.mask = c("Date", "Industry"))
coef(fit)
#> # A tibble: 7 × 4
#> # Groups: model [1]
#> model term estimate model_info
#> <chr> <chr> <dbl> <list>
#> 1 bridge (Intercept) -0.00869 <tibble [1 × 2]>
#> 2 bridge Mkt-RF 0.969 <tibble [1 × 2]>
#> 3 bridge SMB 0.000364 <tibble [1 × 2]>
#> 4 bridge HML 0.0560 <tibble [1 × 2]>
#> 5 bridge RMW 0.155 <tibble [1 × 2]>
#> 6 bridge CMA 0.114 <tibble [1 × 2]>
#> 7 bridge RF 0.986 <tibble [1 × 2]>